스터디일시 : 01/10 금요일 오후 6시 30분 스터디내용 : CNN 과 Fully Network Layer 의 차이점 s는 output featuremap을 의미하고 , x는 input featuremap을 의미한다. fully connected layer의 경우 input이 output featuremap의 픽셀값에 다 반영이 되지만, CNN의 경우 input의 일부만이 반영이 된다. CNN은 weight를 공유한다. 같은 색깔은 같은 weight를 의미한다. ResNet이 왜 나오게 되었는가? 층이 깊어질 수록 vanishing gradient 문제가 발생하여 성능이 오히려 저하된다. 이문제를 해결하기 위해서 기존의 layer를 파라미터 없이 연결하여 성능저하를 막는다. Residual Block..